3 research outputs found

    Simulation of complex environments:the Fuzzy Cognitive Agent

    Get PDF
    The world is becoming increasingly competitive by the action of liberalised national and global markets. In parallel these markets have become increasingly complex making it difficult for participants to optimise their trading actions. In response, many differing computer simulation techniques have been investigated to develop either a deeper understanding of these evolving markets or to create effective system support tools. In this paper we report our efforts to develop a novel simulation platform using fuzzy cognitive agents (FCA). Our approach encapsulates fuzzy cognitive maps (FCM) generated on the Matlab Simulink platform within commercially available agent software. We firstly present our implementation of Matlab Simulink FCMs and then show how such FCMs can be integrated within a conceptual FCA architecture. Finally we report on our efforts to realise an FCA by the integration of a Matlab Simulink based FCM with the Jack Intelligent Agent Toolkit

    A genetic algorithm based economic dispatch (GAED) with environmental constraint optimisation

    Get PDF
    The role of renewable energy in power systems is becoming more significant due to the increasing cost of fossil fuels and climate change concerns. However, the inclusion of Renewable Energy Generators (REG), such as wind power, has created additional problems for power system operators due to the variability and lower predictability of output of most REGs, with the Economic Dispatch (ED) problem being particularly difficult to resolve. In previous papers we had reported on the inclusion of wind power in the ED calculations. The simulation had been performed using a system model with wind power as an intermittent source, and the results of the simulation have been compared to that of the Direct Search Method (DSM) for similar cases. In this paper we report on our continuing investigations into using Genetic Algorithms (GA) for ED for an independent power system with a significant amount of wind energy in its generator portfolio. The results demonstrate, in line with previous reports in the literature, the effectiveness of GA when measured against a benchmark technique such as DSM

    A review of electricity load profile classification methods

    Get PDF
    With the electricity market liberalisation in Indonesia, the electricity companies will have the right to develop tariff rates independently. Thus, precise knowledge of load profile classifications of customers will become essential for designing a variety of tariff options, in which the tariff rates are in line with efficient revenue generation and will encourage optimum take up of the available electricity supplies, by various types of customers. Since the early days of the liberalisation of the Electricity Supply Industries (ESI) considerable efforts have been made to investigate methodologies to form optimal tariffs based on customer classes, derived from various clustering and classification techniques. Clustering techniques are analytical processes which are used to develop groups (classes) of customers based on their behaviour and to derive representative sets of load profiles and help build models for daily load shapes. Whereas classification techniques are processes that start by analysing load demand data (LDD) from various customers and then identify the groups that these customers' LDD fall into. In this paper we will review some of the popular clustering algorithms, explain the difference between each method
    corecore